

 Navigation

 	
 index

 	
 next |

 	excentury 0.2 documentation

Excentury Documentation

Excentury is a collection of libraries written in several languages
to allow the integration of C++ into scription languages such as
Python and MATLAB.

Basic Usage

	 What is Excentury?

	 Installation

	 Getting Started

	 Excentury Data Format

	 Linear Algebra: Armadillo

C++

	 Debugging

This version of the documentation was built August 22, 2014.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	excentury 0.2 documentation

What is excentury?

Excentury is a collection of libraries written in several languages
to enable to the easy integration of C++ to scripting languages. By
using the excentury formats we can use or create new C++ code and
adapt it to computational languages such as Python and MATLAB.

Motivation

Scripting languages give us many advantages: faster development,
extensive libraries and an overall ease of use. They are great tools
and can help individuals with no programming experience to get
started learning how to provide instructions to a machine. They allow
us to explore ideas relatively quick without spending too much time
dealing with compiler errors and many other problems that arise from
low level languages.

The main disadvantage is that their execution is slow compared to the
execution done by those compiled to machine code. Many scripting
languages offer support to adapt low level code, thus allowing you to
gain speed in your scripts. Learning how to do this is usually no
easy task since it requires the user to be familiar with the low
level language and the process to create the library is tedious.

To see how Excentury can help us write adaptable C++ code we present
present a simple programming example.

Newton’s Method

Newton’s method [http://en.wikipedia.org/wiki/Newton%27s_method] is an iterative algorithm which approximates the
roots of a function \(f\) by providing an initial guess
\(x_0\) and computing

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]

until an accurate value is reached. To estimate the square root of a
non-negative real number \(a\) we can apply Newton’s method to
the function \(f(x) = x^2-a\).

The following file square-root.cpp is a program specifically
tailored to compute the square root of 5 using Newton’s method.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	#include <cstdlib>
#include <cstdio>

int main() {
 // INPUTS
 double a = 5;
 double x0 = 1;
 int iter = 10;

 // ARGUMENT CHECKING
 if (a < 0) {
 printf("input `a` must be non-negative\n");
 exit(1);
 }

 // NEWTON'S METHOD
 double x = x0;
 for (int i=0; i < iter; ++i) {
 x = x - (x*x - a)/(2.0*x);
 }

 // OUTPUT
 printf("x = %f\n", x);
}

A drawback of creating a C++ program is that passing inputs can
become a tedious task. As beginners, we usually edit the program,
compile and execute the program many times.

macbook-pro:~ jmlopez$ g++ square-root.cpp -o square-root
macbook-pro:~ jmlopez$./square-root
x = 2.236068

After changing the value of a to 2 we obtain

macbook-pro:~ jmlopez$ g++ square-root.cpp -o square-root
macbook-pro:~ jmlopez$./square-root
x = 1.414214

To avoid recompiling a program over and over again we can provide
inputs via the command line or we can make the program read from a
file. Consider the following modification in lines 6 through 8:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	#include <cstdlib>
#include <cstdio>

int main(int argc, char** argv) {
 // INPUTS
 double a = atof(argv[1]);
 double x0 = atof(argv[2]);
 int iter = atoi(argv[3]);

 // ARGUMENT CHECKING
 if (a < 0) {
 printf("input `a` must be non-negative\n");
 exit(1);
 }

 // NEWTON'S METHOD
 double x = x0;
 for (int i=0; i < iter; ++i) {
 x = x - (x*x - a)/(2.0*x);
 }

 // OUTPUT
 printf("x = %f\n", x);
}

This program now accepts inputs from the command line.

macbook-pro:~ jmlopez$ g++ square-root.cpp -o square-root
macbook-pro:~ jmlopez$./square-root 5 1 10
x = 2.236068
macbook-pro:~ jmlopez$./square-root 2 1 10
x = 1.414214
macbook-pro:~ jmlopez$./square-root 10 1 10
x = 3.162278

This method is perfectly fine even with programs with a large amount
of inputs. The problem is that the program needs to be written
carefully to take into account these inputs. Notice that the program
would halt execution or something would go extremely wrong if we do
not provide the correct inputs to the functions.

macbook-pro:~ jmlopez$./square-root 10 1
Segmentation fault: 11

As it so happens, we forget the usage of a software after a time of
inactivity. For this we have the “man” pages or some source of
documentation. Documentation is often one of the most neglected parts
of a software. The aim of Excentury is to keep a well documented
source code which is easy to adapt to scripting languages.

Excentury

We have seen how a simple C++ program can be written and how
troublesome making a simple routine work can be. Scripting languages
function give us a safe sandbox in which we can call a function
without having the program crash. Instead they throw errors which can
then be dealt with. The idea behind excentury is to create one
document that ties documentation, along with the source code to
provide a package which can easily be exported to a scripting
language of our choice.

In the next section we discuss the installation process of Excentury
and then proceed to follow up on how to adapt our routine to C++,
MATLAB and Python.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	excentury 0.2 documentation

Installing Excentury

Before we can get started adapting our C++ code to our favorite
scripting language we must have a C++ compiler installed and a copy
of Excentury. First we start with the installation of Excentury.

Pip or Manual Installation

The easiest way to install Excentury is to use pip. If you wish
to perform a global installation and you have admin rights then do

sudo pip install excentury

or to install in some directory under your user account

pip install --user excentury

Or if you prefer to do do a manual installation then you may do the
following from the command line (where x.y is the version number):

wget https://pypi.python.org/packages/source/e/excentury/excentury-x.y.tar.gz
tar xvzf excentury-x.y.tar.gz
cd excentury-x.y/
sudo python setup.py install

The last command can be replaced by python setup.py install
--user. See PyPI [https://pypi.python.org/pypi/excentury/] for
all available versions.

Excentury executable

To be able to call excentury from the command line you must have
the executable directory in your $PATH. This can be taken care of
my calling the install command in excentury. Since the
executable is not yet available you will have to call the excentury
script from python.

python -m excentury install

To verify that excentury is now in your path you can try the help
option

excentury -h

The install command also takes care of the C and C++ include
paths. This will make sure that you can access the C++ libraries as
well as the MATLAB libraries.

OS X

To be able to use excentury we need a C++ compiler. We may obtain
this by installing XCode [https://developer.apple.com/xcode/].

The next step is not required but if you are having trouble
installing python packages then you may want to try Homebrew [http://brew.sh/]. Try installing it and then try installing a
fresh installation of python.

MATLAB

Regardless of what operating system we are using, we need to make
sure that our $PATH contains the mex script that comes with
MATLAB.

Before we can use excentury we need to make sure that mex is
working properly. To do a test, you should try to work with one of
the mex examples [http://www.mathworks.com/help/matlab/matlab_external/build-an-executable-mex-file.html] provided by MathWorks.

Note

With every release of OS X and MATLAB there are a few changes
that need to be done. If either the operating system or MATLAB is
updated you should always first try to compile one of their
examples to make sure that mex files can be compiled successfully
before attempting to figure out what is wrong with excentury.

Warning

If you have OS X 10.9 and you are having trouble compiling the
mex example then you may want to look at this stackoverflow
question [http://stackoverflow.com/q/22367516/788553]. Note
that one solution is to upgrade your gcc/g++ compilers using
either homebrew or macports and specify this in the mex setup.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	excentury 0.2 documentation

Getting Started

Excentury aims to provide simple and intuitive tools which we can use
to develop packages with easy. This is done via a file format where
we can write C++ code and give accessibility from MATLAB and Python
at the same time.

The format goes roughly as follows:

"""Package Name

Package documentation.
"""
/* Package preamble contents */
--
/* Function preamble contents */
@def{function name}
 """Function explanation. """
 @param{type1, var1, "var1 explanation"}
 @param{type2, var2, "var2 explanation"}
 @param{type3, var3, "var3 explanation"}
@body[[
 /* Function body */
]]
@ret[[
 @ret{ans1, "ans1"}
 @ret{ans2, "ans2"}
]]
/* Function epilog contents */
--
/* Package epilog (if no more functions are defined) */

Consider the excentury file sample.xcpp.

"""Sample

This package provides the functions to compute the square root of a
non-negative real number.

"""
#include <excentury/excentury.h>

--
@def{square_root}
 """Compute the square root of a number using Newton's method."""
 @param{double, a(2), "the input to the square root function"}
 @param{double, x0(1), "initial guess"}
 @param{int, iter(10), "number of iterations"}
@body[[
 if (a < 0) {
 excentury::error("input `a` must be non-negative");
 }
 double x = x0;
 for (int i=0; i < iter; ++i) {
 x = x - (x*x - a)/(2.0*x);
 }
]]
@ret[[
 @ret{x, "x"}
]]
--
@def{cpp_sqrt}
 """Call the sqrt function provided by c++"""
 @param{double, a(2), "the input sqrt"}
@body[[
 double x = sqrt(a);
]]
@ret[[
 @ret{x, "x"}
]]
--

A key difference as opposed to a regular C++ file is how we are now
defining the section for the inputs and the outputs while leaving the
body of the function almost intact (except for line 17 where we check
for errors).

CPP

To try to run this example in cpp we can try the following:

excentury sample.xcpp to cpp

This will create two valid cpp files which will then be compiled into
binaries which we can call.:

$ sample-square_root.run -h
usage: sample-square_root.run [-h] [-i] XC_CONTENT

program: sample-square_root

description:
 Compute the square root of a number using Newton's method.

parameters:
 `a`: the input to the square root function
 `x0`: initial guess
 `iter`: number of iterations

examples:

 generate an input file: sample-square_root.run -i > input_file.xc
 use the file: sample-square_root.run "`< input_file.xc`"

The help menu is important because it tells us how we can provide the
inputs to the program. In this case we can generate an input file:

$ sample-square_root.run -i > input_file.xc

Since the xcpp file declared default values we can leave the file as
is and run it as follows:

$ sample-square_root.run "`< input_file.xc`"
0 1
x R 8 1.414214

From here on we can simply modify the contents declared in
“input_file.xc” to change the parameters to the function. At this
moment we do not expect you to know what the xc file extension is
formatted. In future sections we will go into detail on this topic
since most of the development of C++ code should be done in a simple
C++ file instead of MATLAB or Python. Only once the C++ code runs as
expected then we can move on to using it in the interpreters.

Python

To be able to use our functions in the sample package we can tell
excentury to give us a python package:

$ excentury sample.xcpp to python

Once excentury is done creating the necessary files we can work
within python:

>>> import sample
>>> sample.square_root(2, 1, 10)
1.41421
>>> sample.square_root(5, 1, 10)
2.23607
>>> sample.square_root(-1, 1, 10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/jmlopez/Library/Python/2.7/lib/excentury/python/sample.py", line 45, in square_root
 raise RuntimeError(xc_error_msg)
RuntimeError: input `a` must be non-negative

If you use the help function on the sample module you can see
that there exists two functions: the one called above and
cpp_sqrt.

>>> sample.cpp_sqrt(2)
1.41421
>>> sample.cpp_sqrt(5)
2.23607
>>> sample.cpp_sqrt(-1)
nan

MATLAB

Two obtain our mex function we can execute the following:

$ excentury sample.xcpp to matlab

Then in the MATLAB prompt we can do

>> help sample.square_root
 sample.SQUARE_ROOT generated on Wed Aug 20, 2014 09:11:18 PM by xcpp

 Compute the square root of a number using Newton's method.

 parameters:

 `a`: the input to the square root function
 `x0`: initial guess
 `iter`: number of iterations

>> sample.square_root(2, 1, 10)

ans =

 1.4142

>> sample.square_root(5, 1, 10)

ans =

 2.2361

>> sample.square_root(-1, 1, 10)
Error using square_root_mex
input `a` must be non-negative

Error in sample.square_root (line 18)
 [~, out_str] = sample.square_root_mex(len_in, in_str);

Similarly, we can use the C++ function square root

>> help sample.cpp_sqrt
 sample.CPP_SQRT generated on Wed Aug 20, 2014 09:11:20 PM by xcpp

 Call the sqrt function provided by c++

 parameters:

 `a`: the input sqrt

>> sample.cpp_sqrt(2)

ans =

 1.4142

>> sample.cpp_sqrt(5)

ans =

 2.2361

>> sample.cpp_sqrt(-1)

ans =

 NaN

What’s Next?

You may use this example to try to experiment creating function which
can be called from CPP, MATLAB or Python. The Excentury documentation
is still far from complete, for the moment you can look over the
source code to see if there are any functions that may be of interest
and give them a try.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	excentury 0.2 documentation

Excentury Format

To be able to seamlessly adapt a piece of C++ code to a script
language we need a way to communicate between C++ and the scripting
language. To understand how this communication process works we must
first examine the excentury file format.

Basic Types

In the C++ language there are several basic datatypes. These types
help us represent integers, real numbers and characters. To be able
to store information we need to be able to store the type of the
object we are storing along with its value. This could have been done
in several ways but for simplicity we have chosen to declare a
datatype by the type of object that is being stored along with the
number of bytes that it is required for it in memory.

There are several datatypes which represent integers, these are
signed char, short int, int and long int. To be able
to represent short int for instance we can state I2, meaning
an integer of 2 bytes. The following table shows all the basic
datatypes in C++ along with its excentury representation.

	Type name
	Excentury
	Denotes

	char
	C 1
	character of 1 byte

	unsigned char
	N 1
	natural number of 1 byte: 0 to 255

	unsigned short int
	N 2
	natural number of 2 bytes

	unsigned int
	N 4
	natural number of 4 bytes

	unsigned long int
	N 8
	natural number of 8 bytes

	signed char
	I 1
	integer of 1 byte: -128 to 127

	short int
	I 2
	integer of 2 bytes

	int
	I 4
	integer of 4 bytes

	long int
	I 8
	integer of 8 bytes

	float
	R 4
	real number of 4 bytes

	double
	R 8
	real number of 8 bytes

These basic types are the building blocks for all possible datatypes
that we might need, these help us build structures which need to be
adapted to excentury in order to store them in a file.

XC files

The idea behind the excentury format is that the content of the file
must contain all the information so that we may load its data into a
scripting language. The following file for instance, does not contain
all the necessary information to load variables into a scripting
language.

	1

	-1 3.14

Here we can tell that the file contains two values, the integer -1 and
the real number 3.14. This however, does not say how it was previously
stored in C++. One way to correct this is to write the file as follows

	1
2
3

	2
a I 4 -1
b R 8 3.14

The file states that it contains two variables. The first one is an
integer of 4 bytes with value -1 and it should be assigned the name
a when loaded. The second variable is a real number of 8 bytes of
value 3.14 and should be named b.

Structures

To store structures we need to find a way of serializing the object
with the minimum amount of information. Suppose that we wish to store
two structures, a Point and a Line.

class Point {
public:
 double x, y;
 Point(): x(1), y(1){}
 Point(double a1, double b2): x(a1), y(b2){}
};

class Line {
public:
 Point a, b;
 Line(): a(0, 0), b(1, 1) {}
 Line(int a1, double b1, int a2, double b2):
 a(a1, b1), b(a2, b2) {}
};

For the moment, let us assume that we have taught excentury how these
two structures need to be serialized. A file containing a Point
named point_obj and a Line named line_obj may possibly
look as follows

2
Point x R 8 y R 8
Line a S Point b S Point
2
point_obj S Point 100.0 200.0
line_obj S Line 1.0 2.0 3.0 4.0

This file states that there are 2 structure definitions. The first
one is for Point. To read a definition we simply read pairs of
tokens: name and type. For a Point we have that its first member
is x and it is a real number of 8 bytes (R 8). The second
member is y and it is a real number of 8 bytes. Here we have to
rely on the new line character to know that there are no other
members for Point. Similarly, for the Line definition we have
that its first member is named a and it is a Point structure
(S Point) while its second member is a Point structure named
b. This first section we just described is the dictionary for the
file. This part contains all the definitions of structures stored in
the file.

The second part contains the actual data. Here we can see that the
file contains 2 objects. The first one is called point_obj. This
is a structure of type Point. Since we now know the definition
for a Point we now know that we expect two values: a real number
x and a real number y. In this case these values are 100 and
200. The second object we have a Line structure. This one is made
up of two points. So we must first the first point a which has
members x and y, thus the member a has member x of
value 1 and member y of value 2. Similarly for the member b we
have values 3 and 4.

To store a structure we first need to tell Excentury how to store it.
This however, will be covered in a later section. For now, we must
mention one last object that is essential to the excentury format.

Tensors: Multidimensional Arrays

Arrays are essential to every programming language. Here we will give
a brief introduction on how we decided to store them in the excentury
format.

To store an array of integers of 4 bytes we could state the variable
name followed by A I 4 followed by the number of elements in the
array and their values. For instance

array_name A I 4 3 1 2 3

This was the original idea on how to store arrays. Similarly for
matrices we would use the letter M but this time we would use two
values to store its dimension.

matrix_name M I 4 2 3 1 2 3 4 5 6

One problem with this notation is that we assumed that the
information was stored in column major form. That is the matrix in
the previous file is

\[\begin{split}\left[\begin{array}{cc}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array} \right]\end{split}\]

We can overcome this problem by adding a 0 if we want column major
or 1 if we want row major. The main problem when storing arrays and
matrices however is that if we continue naming these structures we
will soon find that we run out of names. For instance, an array is
simply a sequence of objects. An array of arrays is called a matrix.
An array of matrices is, well, a tensor of dimension 3. A
multidimensional array is a tensor.

To specify a tensor we can use T <type> where type is either a
basic type, a structure or a tensor. After that we must specify if it
is row major or column major followed by the number of dimensions of
the tensor and its dimensions. Finally we write the data.

To specify the previous array and matrix we would write the following
excentury file

0 2
array_name T I 4 0 1 3 1 2 3
matrix_name T I 4 0 2 2 3 1 2 3 4 5 6

There is one type of array which is special that treating it as a
tensor may be considered a waste of resources. A sequence of
characters is usually known as a string. This type of array is
special in excentury and it has been given the type W. For
instance to store the string "hello world" we can use:

0 1
str_obj W 11 hello world

This says that str_obj is a word (W) of 11 characters.

Summary

The excentury file format takes the following form

<number of definition>
<structure name> [<member name> <type>] ...
...
<number of objects>
<variable name> <type> <data>
<variable name> T <type> <row major:1, column major: 0> <dimension> <dimensions> <data>
<variable name> W <string size> <data>
...

To write this file format we can use C++, Python or MATLAB. See each
of their sections for more information and examples on how to do it.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	excentury 0.2 documentation

Armadillo

Excentury supports the use of armadillos datatypes. Armadillo is a
C++ linear algebra library. See more information on the library at
http://arma.sourceforge.net/.

To see an example see the following directory

> https://github.com/jmlopez-rod/excentury/tree/master/tests

There we can find xcpp/arma.xcpp which contains an example. We
also need to consider the configuration file xcpp.config since it
contains information on how to compile excentury files using the
armadillo library.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	excentury 0.2 documentation

Debugging

Writing C++ routines is no easy task. Many times a program ends
abrutly with an error. A common error is a “segmentation fault”
error. When a program displays this message it usually means that the
program was trying to access a memory location outside its address
space. Many other errors may occurr but finding these errors is
usually a time consuming task and several debugging techniques are
needed to find them.

A common debugging technique is to print messages on your program so
that you may debug or trace the execution of the program. Excentury
provides three macro functions to aid in future debugging tasks.
These functions expand to a command if the DEBUG macro is defined
before the inclusion of excentury.h. There are three values that
the DEBUG macro can take. These three values are the several
levels of debugging which can facilitate the debugging task at hand
and in the future.

To explore what each of these levels do we will consider the file
example.cpp which looks as follows

	1
2
3
4
5
6
7
8
9

	#include <excentury/excentury.h>

int main() {
 debug("This message is only seen with DEBUG set to 2\n");
 trace("This message is only seen with DEBUG set to 3\n");
 printf("Hello world\n");
 exitif(true, NULL, "This is a test to check that DEBUG is on.\n");
 printf("Debug was turned off...\n");
}

Notice that a compilation without defining the DEBUG macro will result
in the following

$ g++ example.cpp -o example.run
$./example.run
Hello world
Debug was turned off...

This is because debug, trace and exitif expanded to
nothing, i.e., example.cpp expanded to

#include <excentury/excentury.h>

int main() {
 printf("Hello world\n");
 printf("Debug was turned off...\n");
}

Level 1: exitif

This is the most basic level and it will allow you to use the
exitif function.

exitif(condition, function_call, ...)

This is a macro which expands to the following:

if (condition) {
 printf(...);
 function_call;
 exit(1);
}

To can either define DEBUG before inclusion of
excentury/excentury.h or define it during the call to g++

$ g++ -DDEBUG=1 example.cpp -o example.run1
$./example.run1
Hello world
ERROR CAUGHT BY example.cpp line 7 executing:

 int main()

The error occurred because: true

This is a test to check that DEBUG is on.

In this case, notice that since exitif was defined and the
condition to exit was satisfied (any statement that evalutes to
true) the program printed a statement explaining the error
detected and halted the execution of the program.

Level 2: debug

This level provides the function debug. These messages should
only be used while debuging. If the messages could help in the future
then we should replace debug with the level 3 function trace.
The debug function behaves as printf but will only be
expanded in levels 2 and 3.

$ g++ -DDEBUG=2 example.cpp -o example.run2
$./example.run2
This message is only seen with DEBUG set to 2
Hello world
ERROR CAUGHT BY example.cpp line 7 executing:

 int main()

The error occurred because: true

This is a test to check that DEBUG is on.

Notice the message from level 1 was displayed as well as the message
provided to the debug function. Again, these messages are meant
to be temporary in order to find out what is going on. We could have
used the printf function but soon we will not be able to
differentiate between the actual statements that we want to display
and those that were temporary debugging messages.

Level 3: trace

Provides the function trace which will display messages when
level 3 is active. These messages are meant to be permanent messages
and should be designed to help the user have a better idea of what is
going on with the program.

$ g++ -DDEBUG=3 example.cpp -o example.run3
$./example.run3
This message is only seen with DEBUG set to 2
This message is only seen with DEBUG set to 3
Hello world
ERROR CAUGHT BY example.cpp line 7 executing:

 int main()

The error occurred because: true

This is a test to check that DEBUG is on.

The debugging level 3 is really meant to be used as a last resort
tool. If done correctly, the debugging level 1 should catch the
errors. If this is not enough then we may display messages by using
level 2. If all fails then we may want to activate the trace
messages to see if there are any useful messages.

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	excentury 0.2 documentation

Index

 Copyright 2014, Manuel Lopez.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/comment.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

